

Acoustic Consultants Member Australian Acoustical Society

Proposed Mixed Use Residential

297 Bringelly Road, Leppington NSW

Noise Impact Assessment

REPORT R170468R4

Revision 5

Prepared for:

Urban Link Pty Ltd

Level 10, 11 - 15 Deane Street

Burwood NSW 2134

15 March 2020

PO Box 522 Wahroonga NSW 2076 P 02 9943 5057 F 02 9475 1019 mail @ rodneystevensacoustics.com.au

Proposed Mixed Use Residential

297 Bringelly Road, Leppington NSW

Noise Impact Assessment

PREPARED BY:

Rodney Stevens Acoustics Pty Ltd Telephone: 61 2 9943 5057 Facsimile 61 2 9475 1019 Email: info@rodneystevensacoustics.com.au Web: www.rodneystevensacoustics.com.au

DISCLAIMER

Reports produced by Rodney Stevens Acoustics Pty Ltd are prepared for a particular Client's objective and are based on a specific scope, conditions and limitations, as agreed between Rodney Stevens Acoustics and the Client. Information and/or report(s) prepared by Rodney Stevens Acoustics may not be suitable for uses other than the original intended objective. No parties other than the Client should use any information and/or report(s) without first conferring with Rodney Stevens Acoustics.

The information and/or report(s) prepared by Rodney Stevens Acoustics should not be reproduced, presented or reviewed except in full. Before passing on to a third party any information and/or report(s) prepared by Rodney Stevens Acoustics, the Client is to fully inform the third party of the objective and scope and any limitations and conditions, including any other relevant information which applies to the material prepared by Rodney Stevens Acoustics. It is the responsibility of any third party to confirm whether information and/or report(s) prepared for others by Rodney Stevens Acoustics are suitable for their specific objectives.

DOCUMENT CONTROL

Reference	Status	Date	Prepared	Checked	Authorised
R170468R0	Revision 0	13 April 2018	Dani Awad	Rodney Stevens	Rodney Stevens
R170468R1	Revision 1	16 May 2018	Dani Awad	Rodney Stevens	Rodney Stevens
R170468R2	Revision 2	20 March 2019	Dani Awad	Rodney Stevens	Rodney Stevens
R170468R3	Revision 3	5 June 2019	Dani Awad	Rodney Stevens	Rodney Stevens
R170468R4	Revision 4	11 July 2019	Dani Awad	Rodney Stevens	Rodney Stevens
R170468R5	Revision 5	15 March 2020	Dani Awad	Rodney Stevens	Rodney Stevens

Proposed Mixed Use Residential 297 Bringelly Road, Leppington Noise Impact Assessment Page 2

TABLE OF CONTENTS

1	INTRODUCTION				
2	PRO	JECT OVERVIEW	5		
	2.1	Proposed Development	5		
3	EXIS	TING NOISE ENVIRONMENT	6		
	3.1	Road Traffic Noise Prediction	7		
4	RAIL	NOISE MEASUREMENTS	8		
	4.1	Attended Noise Measurements	8		
	4.2	Measurement Conditions	8		
	4.3	Rail Noise Measurements	8		
5	ASSE	ESMENT CRITERIA	9		
	5.1	Rail Noise and Vibration Criteria 5.1.1 State Environmental Planning Policy (Infrastructure) 2007	9 9		
	5.2	Camden Council Environmental Noise Policy	10		
6	NOIS	E ASSESSMENT	11		
	6.1	Road Traffic Noise Intrusion – Internal Space	11		
	6.2	Road Traffic and Rail Noise Intrusion – Open spaces	12		
	6.3	Rail Noise 6.3.1 Rail Noise Intrusion Assessment	12 12		
7	REC	OMMENDATIONS	13		
8	NOIS	E INTRUSION FROM RETAIL PREMISES	14		
9	VIBR	ATION ASSESSMENT	15		
10	MEC	HANICAL PLANT AND OPERATIONS ASSESSMENT	15		
	10.1	Operational Noise Project Trigger Noise Levels	15		
		10.1.1 Intrusiveness Noise Levels	15		
		10.1.2 Amenity Noise Levels	15 15		
		10.1.4 Project Specific Trigger Noise Levels	15		
11	OPE	RATIONAL NOISE ASSESSMENT	16		
	11.1	Mechanical Plant Noise Assessment	16		
	11.2	Mechanical Plant Noise Recommendations	17		
12	12 CONCLUSION 17				
Table	e 3-1	Measured Existing Noise Levels Corresponding Assessment Time Periods	7		
iable	, - T - I		0		

(((((((())))))))))

		(((((((©))
Table 5-1	DP&I Interim Guideline Noise Criteria	9
Table 5-2	Acceptable vibration dose values for intermittent vibration in residences (m/s^1.75)	10
Table 6-1	Predicted Internal Noise Levels	11
Table 7-1	In-principle Glazing Recommendations	13
Table 10-1	Project Specific Trigger Noise Levels	16
Table 11-1	Sound Power Levels	16
Table 11-2	Mechanical Plant Noise Assessment at Nearby Noise Sensitive Receiver	17
Figure 2-1 Figure 2-2	Project Area and Surrounding Environment Proposed Site layout	5 6

1 INTRODUCTION

Rodney Stevens Acoustics Pty Ltd (RSA) has been engaged by Urban Link Pty Ltd to prepare a Noise Impact Assessment for the proposed mixed-use residential development at 297 Bringelly Road, Leppington NSW.

The primary purpose of the assessment is to determine the site's exposure to road traffic noise from Bringelly road and rail noise and vibration impacts from the T2 Inner West and Leppington line and where required provide in-principle design advice to achieve the requirements of acoustic amenity within future residential dwellings this also includes amenity from the proposed commercial spaces. A mechanical plant assessment for the site will also form part of this report.

Specific acoustic terminology is used in this report. An explanation of common acoustic terms is provided in Appendix C.

2 PROJECT OVERVIEW

2.1 Proposed Development

The proposed development is located at 297 Bringelly Road, Leppington. The project area and its surrounding environment are presented in Figure 2-1 below.

Aerial image courtesy of © 2020 Nearmap

The proposed site layout and architectural drawings are presented in Figure 2-2 and Appendix D.

3 EXISTING NOISE ENVIRONMENT

Unattended noise monitoring for the residential development was carried out between 4 April 2017 and 11 April 2017 at the locations shown in Figure 2-1.

The location was selected after a detailed inspection of the project area with consideration to other noise sources that may influence the readings, the proximity of noise-sensitive receivers and security issues for the noise monitoring device and gaining permission for access from the residents or landowners. The results of the ambient noise monitoring are shown in Table 3-1.

Instrumentation for the survey comprised of 2 RION NL-42 Environmental Noise Loggers (serial numbers 572559 and 184112) fitted with a microphone windshield. Calibration of the loggers was checked prior to and following measurements. Drift in calibration did not exceed ± 0.5 dBA. All equipment carried appropriate and current NATA (or manufacturer) calibration certificates.

From the measured noise levels, the results have been summarised and presented in Table 3-1. These results represent the external noise exposure to the proposed residential development site from the road traffic noise on Bringelly Road and the surrounding area. The monitored baseline noise levels are detailed in Table 3-1.

Location	Measurement Descriptor	Measured Noise Level – dBA re 20 µPa	
		Daytime 7.00 am – 10.00 pm	Night-time 10.00 pm – 7.00 am
Location 1	LAeq ¹	56	53
	RBL (Background) ²	46	33
Location 2	LAeq ¹	48	47
	RBL (Background) ²	40	35

Table 3-1 Measured Existing Noise Levels Corresponding Assessment Time Periods

Note 1: The LAeq is essentially the average sound level. It is defined as the steady sound level that contains the same amount of acoustical energy as a given time-varying sound.

Note 2: The RBL noise level is representative of the average minimum background sound level (in the absence of the source under consideration), or simply the background level.

3.1 Road Traffic Noise Prediction

Calculation of the levels of road traffic noise likely to be experienced at the future residence constructed at the site have been carried out using the Calculation of Road Traffic Noise (CoRTN 1988) prediction method and the NSW Roads and Maritime Service's GHD Traffic & Transport Impact Assessment (21/24664) traffic volume figures for Bringelly Road.

Most recent RMS traffic volume count for Bringelly Road was conducted in 2015. Based on the GHD Road and Maritime Services Traffic Impact Assessment of the area, a 66% increase of background traffic on Bringelly Road has been assumed for a 10-year noise prediction. Based on extrapolation of the traffic volume data, we estimate that the AADT volume to be 10,726 vehicles for Year 2019 a 66% increase from 6,462 vehicles in 2015.

The predicted noise exposure levels to the proposed development from the road traffic from Bringelly Road is L_{Aeq} 67 dB(A) for day and L_{Aeq} 62 for night in 2029.

4 RAIL NOISE MEASUREMENTS

4.1 Attended Noise Measurements

Train noise measurements were carried to capture the typical noise levels from train pass bys. A set of 10 measurements were taken at approximately 80 metres from the railway line from the edge of the southern boundary line in line of sight with the rail corridor. Measurements were carried out on Wednesday 16 May 2018 between 6:30 pm and 8:30 pm

A NTI XL2-TA, serial (A2A-11435-E0) sound level meter was used to measure the train pass-by noise levels. The meter calibration setting was reference checked at the start and end of the monitoring period with a BSWA sound level calibrator. No significant drift was detected. Weather conditions were fine.

For each train pass by, the L_{Amax} and L_{AE} noise levels were recorded, as well as the frequency spectra of each of these parameters. " L_{AE} " refers to the sound exposure level (a measurement integrated over time, reflecting both the noise level and the duration of the event). L_{AE} values may be summed logarithmically and used to calculate the total daily noise exposure due to train noise emissions over the daytime (7.00 am to 10.00 pm) or night-time (10.00 pm to 7.00 am) periods. Train type and directions were noted during the measurements.

4.2 Measurement Conditions

Noise measurements were conducted at the approximate location of the southern boundary of the project area of the development. It has been determined that measurements performed at this location would be representative of rail noise entering the development.

4.3 Rail Noise Measurements

10 valid train noise measurements were conducted on Wednesday 16 May 2018. The train pass bys were 10 passenger trains. The results are summarised in Table 4-1 below.

Time	Train Type	Direction	$L_{AE}-dB(A)$
6:45 pm	Passenger	East Bound	74
6:57 pm	Passenger	East Bound	72
7:08 pm	Passenger	East Bound	72
7:12 pm	Passenger	East Bound	68
7:23 pm	Passenger	East Bound	60
7:30 pm	Passenger	East Bound	72
7:38 pm	Passenger	East Bound	72
7:51 pm	Passenger	East Bound	76
7:54 pm	Passenger	East Bound	68
8:06 pm	Passenger	East Bound	69

Table 4-1 Measured Noise Levels

5 ASSESMENT CRITERIA

5.1 Rail Noise and Vibration Criteria

The determination of an acceptable level of traffic noise impacting the internal residential spaces requires consideration of the activities carried out within the space and the degree to which noise will interfere with those activities.

As sleep is the activity most affected by traffic noise, bedrooms are considered to be the most sensitive internal living areas. Higher levels of noise are acceptable in living areas without interfering with activities such as reading, listening to the television etc. Noise levels in utility spaces such as kitchens, bathrooms, laundries etc. can be higher.

5.1.1 State Environmental Planning Policy (Infrastructure) 2007

Traffic and Rail Noise Criteria

The NSW Government's State Environmental Planning Policy (Infrastructure) 2007 (SEPP (Infrastructure) 2007) was introduced to facilitate the delivery of infrastructure across the State by improving regulatory certainty and efficiency. In accordance with the SEPP, Table 3.1 of the NSW Department of Planning and Infrastructure's "*Development near Rail Corridors and Busy Roads - Interim Guideline*" (the DP&I Guideline) of December 2008 provides noise criteria for residential and non-residential buildings. These criteria are summarised in Table 5-1 below:

Table 5-1 DP&I Interim Guideline Noise Criteria

Type of occupancy	Noise Level dB(A)	Applicable time period
Sleeping areas (bedroom)	35	Night 10 pm to 7 am
Other habitable rooms (excl. garages, kitchens, bathrooms & hallways)	40	At any time

Note 1: Airborne noise is calculated as L_{Aeq(15hour)} daytime and L_{Aeq(9hour)} night-time

The following guidance is also provided in the DP&I Guideline:

"These criteria apply to all forms of residential buildings as well as aged care and nursing home facilities. For some residential buildings, the applicants may wish to apply more stringent design goals in response to market demand for a higher quality living environment.

The night-time "sleeping areas" criterion is 5 dB(A) more stringent than the "living areas" criteria to promote passive acoustic design principles. For example, designing the building such that sleeping areas are less exposed to road or rail noise than living areas may result in less onerous requirements for glazing, wall construction and acoustic seals. If internal noise levels with windows or doors open exceed the criteria by more than 10 dB(A), the design of the ventilation for these rooms should be such that occupants can leave windows closed, if they so desire, and also to meet the ventilation requirements of the Building Code of Australia."

Table 5-1 applies to a 'windows closed condition'. Standard window glazing of a building will typically attenuate noise ingress by 20 dB(A) with windows closed and 10 dB(A) with windows open (allowing for natural ventilation). Accordingly, the external noise threshold above which a dwelling will require mechanical ventilation is an $L_{Aeq(9hour)}$ of 55 dB(A) for bedrooms and $L_{Aeq(15hour)}$ of 60 dB(A) for other areas.

Where windows must be kept closed, the adopted ventilation systems must meet the requirements of the Building Code of Australia and Australian Standard 1668 – The use of ventilation and air conditioning in buildings.

Rail Vibration Criteria

Section 3.6.3 of the NSW Department of Planning and Infrastructure's "*Development near Rail Corridors and Busy Roads - Interim Guideline*" requires that intermittent vibration emitted by trains should comply with the criteria in the EPA's document Assessing Vibration: a technical guideline.

Table 2.4 of the "*Assessing Vibration guidelines*" sets out the following acceptable vibration dose values for residences affected by intermittent vibration:

	Acceptable vibration dose values for intermittent vibration in residences (m/s)				
Location	Period	Preferred V	DV Maximum VDV		
Decidences	Day (7am-	.10pm) 0.20	0.40		
Residences	Night (10p	m-7am) 0.13	0.26		

Table 5-2 Acceptable vibration dose values for intermittent vibration in residences (m/s^{A1.75})

5.2 Camden Council Environmental Noise Policy

Part B, Section 5 of Camden Council's Environmental Noise Policy provides the criteria to assess noise intrusion from road traffic from local and major roads. The guideline provides a framework that "guides the consideration and management of traffic noise issues associated with new building developments near existing roads, and new upgraded road developments adjacent to new or planned building developments".

The main intention of this guideline is to allow:

• Council to develop and set their own controls and criteria for land uses that are affected by road traffic noise;

Council to integrate land use and road transport planning;

• Inform road builders and their managers to select feasible and reasonable noise mitigation measures as required.

From the SEPP, "Part 3 - Division 17 Roads and Traffic, Clause 102 – Impact of road noise or vibration on non-road development", provides a number of sub-clauses that apply to development. This development involves buildings for residential use, a place of worship, a hospital, and educational establishments or child care centers that are proposed "on land in or adjacent to the road corridor that includes freeways, tollways or transit way or any other road with an annual average daily traffic volume of more than 40000 vehicles (RTA website) and that the consent authority considers is likely to be adversely affected by road noise or vibration".

The main intention of this SEPP with respect to noise is to ensure:

- that the Consent Authority considers any guidelines issued by the Director General prior to determining a development application; and
- that the proposed buildings for residential use comply with appropriate internal acoustic levels.

Council's Policy adopts the assessment criteria as contained within the ECRTN and the SEPP for assessing noise impact from road traffic noise on developments. However, consideration of the SEPP acoustic criteria

will only apply to developments impacted by roads that have an annual average daily traffic volume of more than 40,000 vehicles.

With reference to the SEPP, the consent authority must be satisfied that appropriate measures are taken to ensure that the following internal LAeq acoustic levels are not exceeded:

a) In any bedroom in the building - 35 dB(A) at any time between 10pm and 7am; and

b) Anywhere else in the building (other than the garage, kitchen, bathroom or hallway) – 40 dB(A) at any time.

With reference to the Environmental Criteria for Road Traffic Noise (ECRTN) for road traffic noise intrusion into outdoor areas such as balconies, the following internal L_{Aeq} acoustic levels are not exceeded:

- New residential developments affected by traffic noise from local roads:
 - o Between (Day) 7am 10pm, LAeq(1hr) 55 dB(A)
 - Between (Night) 10pm 7am, L_{Aeq(1hr)} 50 dB(A)

6 NOISE ASSESSMENT

6.1 Road Traffic Noise Intrusion – Internal Space

This assessment predicts future road traffic noise intrusion from Bringelly Rd, and the surrounding area to the proposed residential development.

Standard window glazing of a building will typically attenuate these noise levels by 20 dB(A) with windows closed and 10 dB(A) with windows open (allowing for natural ventilation). The predicted internal noise levels of the proposed residential units are presented in Table 6-1 for the windows open and windows closed scenarios. Standard window system (4 mm thick glass with aluminum frame) has been assumed for this prediction.

Type of	Deceriptor	Internal Noise Level		Noice Criteria	
Occupancy	Descriptor	Windows Open	Windows Closed	Noise Chiena	
	Resider	ntial Dwellings on the No	orthern Boundary		
Living Areas (Daytime)	L _{Aeq,15hour}	48 dB(A)	38 dB(A)	40 dB(A)	
Living Areas (Night time)	L _{Aeq,9hour}	45 dB(A)	35 dB(A)	40 dB(A)	
Sleeping Areas (Night time)	LAeq,9hour	45dB(A)	35 dB(A)	35 dB(A)	

Table 6-1	Predicted	Internal	Noise	l evels
	Fredicted	initemai	110136	LEVEIS

The predicted internal noise levels indicate that road traffic noise on the proposed residential dwellings will potentially exceed the noise criteria with windows opened for the residential dwellings. Further acoustic treatment is recommended for the development to comply with the SEPP criteria.

6.2 Road Traffic and Rail Noise Intrusion – Open spaces

Building B

Road traffic noise intrusion from Bringelly Road to the most sensitive residential private open spaces on the northern façade of Building B is predicted to be **58 dB(A)** $L_{Aeq(1hr)}$ (Non-Compliant) *. Noise intrusion the communal open areas on levels 5 & 6 north is predicted to be 52 dB(A) $L_{Aeq(1hr)}$ (Compliant) and negligible for open areas on level 5 & 6 south due to shielding. Noise intrusion to the larger central communal ground floor area is negligible due to shielding.

Note*: It must be noted that although the northern façade balconies do not comply to the 55dB(A) criteria set, these results are based on estimated 2029 future noise prediction levels and that a difference of 2dB(A) is manageable.

Building A

Due to both distance from Bringelly Road and the train line to the south and when considering the locations of all the open spaces of Building A and the shielding provided by Building B any noise intrusion to open spaces is considered negligible.

This assessment is based on similar designs including the provision of balcony balustrades and incidental barriers such as the landscape and the shielding caused by the development itself. Buildings "A & B" are deemed to have enough distance from the train line so that any external rail noise into open spaces is negligible.

6.3 Rail Noise

6.3.1 Rail Noise Intrusion Assessment

The sound exposure noise level (SEL) or L_{AE} measurements were used to calculate the $L_{eq(15hr)}$ and $L_{eq(9hr)}$ by extrapolating the measured results with the frequency of train pass-bys during the day time (07:00 to 22:00) and night time (22:00 to 07:00) periods, this was done by obtaining to number of train pass bys from the current CityRail timetable. We identified a number of 185 train pass bys for the daytime period and 45 trains for the nighttime period.

The final façade noise levels were predicted for each time period taking into account the distance attenuation from each respective source, virtual source, façade's orientation and any barrier effects.

The required noise reduction via the building façade for each respective room for each time period will be compared to determine the appropriate design criteria levels.

The internal noise levels were predicted accounting for the external noise levels, the area and sound attenuation properties of the façade elements and the dimensions and absorptive properties of the receiving room. The absorptive properties of the receiver rooms are typically governed by the furnishings. For this assessment all habitable rooms have been assumed to have timber flooring and all bathrooms and laundries are tiled.

It is typically accepted that an open window (fractionally open to meet ventilation requirements) results in an attenuation of external noise by 10 dB. This reduction has been used to predict the room noise level in the window open condition.

The calculated Rail $L_{eq(Period)}$ noise levels are presented in Table 6-2 below.

Table 6-2	Calculated Leq Noise Levels For Day and Night Time periods
-----------	--

	Calculated Noise Level dB(A)			
Location	L _{eq(15hour)} 7:00 to 22:00	L _{eq(9hour)} 22:00 to 7:00		
Southern Facade	20	16		

7 RECOMMENDATIONS

Based on the above-predicted road traffic noise impact the following noise control measures are recommended for the residential units:

The following units will require alternative ventilation methods which meet the ventilation requirements of the BCA and Australian Standard AS 1668.2:2002 will be required and design input should be sought from an appropriately qualified mechanical services consultant.

• Residential units on the northern, eastern and western facades of the northern block of Building B (Levels 1-6). (With the exclusion of units with wintergardens providing a stream of natural ventilation throughout the unit) will require alternate ventilation. Facades in question are highlighted in RED in Appendix D. All remaining facades may have natural ventilation.

Based on the predicted internal noise levels, glazed windows and doors certain facades of residential development should have the following minimum Rw rating as indicated in Table 7-1 below.

Table 7-1 In-principle Glazing Recommendations

Location	Glazing Type	Minimum Glazing Rw Rating	Indicative Glazing System		
(Building B) Residential Dwellings (Northern, Western and Eastern Facades) 1 st Floor to 6 th Floor					
Living Rooms	Sliding Door	Rw 30	6.38mm laminated glass in acoustically sealed frame*		
	Sliding Window	Rw 30	6.38mm laminated glass in acoustically sealed frame*		
Bedrooms	Sliding Door	Rw 32	6.38mm laminated glass in acoustically sealed frame*		
	Sliding Window	Rw 32	6.38mm laminated glass in acoustically sealed frame*		

(Building A)) Residential Dwellings (Sc	outhern Façade/Commu	nal Open Space)
	Grou	nd Floor	
Living Rooms	Sliding Door	Rw 30	6.38mm laminated glass in acoustically sealed frame*

	Sliding Window	Rw 30	6.38mm laminated glass in acoustically sealed frame*
Bedrooms	Sliding Door	Rw 32	6.38mm laminated glass in acoustically sealed frame*
	Sliding Window	Rw 32	6.38mm laminated glass in acoustically sealed frame*

(Building A) Residential Dwel	lings Southern, Western a Northern fa 1 st Floor	and Eastern Facades (Ind acing façade) to 6 th Floor	cluding the inner communal area
Living Rooms	Sliding Door	Rw 30	6.38mm laminated glass in acoustically sealed frame*
Living Rooms	Sliding Window	Rw 30	6.38mm laminated glass in acoustically sealed frame*
Bedrooms	Sliding Door	Rw 32	6.38mm laminated glass in acoustically sealed frame*
	Sliding Window	Rw 32	6.38mm laminated glass in acoustically sealed frame*

Note *: glazing system are for reference only. Any glazing system to be installed for the development is to achieve the minimum Rw rating indicated above.

It must be noted that the above glazing recommendations take into consideration any noise generated by the proposed commercial and retail areas on the ground floor, glazing specification for Building A have thus been increased. Glazing recommendations for Building B are deemed to be sufficient. This is in direct response to council DA condition *Environmental Health 2. (External Noise).*

Standard glazing may be used for all other glazing throughout the development. This can be achieved with standard aluminium frames, seals and 4mm glass panes. Other glazing systems may be available but their Rw rating must be reviewed in accordance with Table 5-1. No further acoustic requirements are needed

Please note Rw ratings provided in Table 7-1 rely on the acoustic performance of the window glazing and frame. Rw ratings should be checked with glazing manufacturers and frames should be selected and installed as to not degrade the performance of the glazing. It is also recommended that glazing specifications are reviewed at the detailed design stage, most notably if changes to the glazing area are made throughout the design.

8 NOISE INTRUSION FROM RETAIL PREMISES

Urban Link has advised that wall and ceiling construction for adjoining residential and retail premises will consist of **Hebel walls, concrete slabs and dropped ceilings**. Due to possible internal noise intrusion from retail premises to adjoining dwellings these structural elements must have a **Rw+Ctr = 50**. If construction types are to change at a later stage, structural elements will need to uphold the specified recommended values.

9 VIBRATION ASSESSMENT

Due to the distance of the boundary line of the proposed development being greater than 25 meters to the T2 Inner West and Leppington line, a vibration assessment will not be required as part of this report. Furthermore, due to the distance to the site any train vibration is deemed negligible.

10 MECHANICAL PLANT AND OPERATIONS ASSESSMENT

10.1 Operational Noise Project Trigger Noise Levels

Responsibility for the control of noise emissions in New South Wales is vested in Local Government and the EPA. The EPA oversees the Noise Policy for Industry (NPfI) October 2017 which provides a framework and process for deriving project trigger noise level. The NPfI project noise levels for industrial noise sources have two (2) components:

- Controlling the intrusive noise impacts for residents and other sensitive receivers in the short term; and
- Maintaining noise level amenity for particular land uses for residents and sensitive receivers in other land uses.

10.1.1 Intrusiveness Noise Levels

For assessing intrusiveness, the background noise generally needs to be measured. The intrusiveness noise level essentially means that the equivalent continuous noise level (LAeq) of the source should not be more than 5 dB(A) above the measured Rated Background Level (RBL), over any 15-minute period.

10.1.2 Amenity Noise Levels

The amenity noise level is based on land use and associated activities (and their sensitivity to noise emission). The cumulative effect of noise from industrial sources needs to be considered in assessing the impact. The noise levels relate only to other industrial-type noise sources and do not include road, rail or community noise. The existing noise level from industry is measured.

If it approaches the project trigger noise level value, then noise levels from new industrial-type noise sources, (including air-conditioning mechanical plant) need to be designed so that the cumulative effect does not produce total noise levels that would significantly exceed the project trigger noise level.

10.1.3 Area Classification

The NPfI characterises the "Suburban" noise environment as an area with an acoustical environment that:

- has local traffic with characteristically intermittent traffic flows or with some limited commerce or industry.
- This area often has the following characteristic: evening ambient noise levels defined by the natural environment and human activity

The area surrounding the proposed development falls under the "Suburban" area classification.

10.1.4 Project Specific Trigger Noise Levels

Having defined the area type, the processed results of the attended noise monitoring have been used to determine project specific project trigger noise level. The intrusive and amenity project trigger noise level for nearby residential premises are presented in Table 10-1. These project trigger noise levels are nominated for the purpose of assessing potential noise impacts from the proposed development.

For each assessment period, the lower (i.e. the more stringent) of the amenity or intrusive criteria are adopted. These are shown in bold text in Table 10-1.

	Time of	MeasuredProject specific Noise LevelsImage: DayANL 1 LAeq(15min)RBL 2 LA90(15min)LAeq Noise Level)Intrusive LAeq(15min)Amenity 3 LAeq(15min)Day5540534555Evening4540484545				
Receiver	Day		RBL ² L _{A90(15min)}	L _{Aeq} Noise Level)	Intrusive L _{Aeq(15min)}	Amenity ³ L _{Aeq(15min)}
	Day	55	40	53	45	55
Residential	Evening	45	40	48	45	45
	Night	40	35	47	40	40

Table 10-1 Project Specific Trigger Noise Levels

Note 1: ANL = "Acceptable Noise Level" for residences in Suburban Areas.

Note 2: RBL = "Rating Background Level".

11 OPERATIONAL NOISE ASSESSMENT

11.1 Mechanical Plant Noise Assessment

The proposed development is understood to be serviced by comfort ventilation of the individual living units using vented air conditioning. Mechanical plant design for the development includes the operation of multiple AC fan units, service fans, car park supply fans and car park exhaust fans. The noise data for the mechanical plants are presented in the table below:

Table 11-1 Sound Power Levels

Mechanical Plant	Resultant Noise Level per Octave Band (dB)						Overall (dBA)
	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	
CPEF 01 (Building A)	90	92	93	92	90	87	76
CPEF 02 (Building A)	97	93	93	90	89	86	75
CPSF 01 (Building A)	102	98	98	93	94	90	80
AC Condenser Units (Building A)	-	-	-	-	-	-	66
Carpark exhaust fan (Building B)	101	99	97	97	94	90	81
Carpark supply fan (Building B)	99	97	97	94	93	90	79
AC Condenser Units (Building B)	-	-	-	-	-	-	66

The noise impact to the surrounding residents from the operation of the mechanical plants have been calculated and presented in the table below. AC units and fans are partially shielded by proposed building façade and existing barriers and have factored into the calculations.

Residential Receiver	Noise Source	Resultant Noise Level at Sensitive Receiver	Criteria	Compliance (Y/N)
400 Bringelly Rd (north)	Mechanical Plant	22	Day: 45 dB(A)	Y
293 Bringelly Rd (east)	Mechanical Plant	35	Evening: 45 dB(A)	Y
307 Mitchell Ave (West)	Mechanical Plant	33	Night: 35 dB(A)	Y

 Table 11-2
 Mechanical Plant Noise Assessment at Nearby Noise Sensitive Receiver

* We note that an exceedance of 1 dB(A) is generally regarded as being acoustically insignificant

The operation of the mechanical plant shows compliance to all sensitive receivers.

The noise modelling has taken assumed the noise control measures presented in the mechanical plans and incorporated attenuation recommendations by Rodney Stevens Acoustics. The acoustic measures included below in section 11.2.

- 11.2 Mechanical Plant Noise Recommendations
 - Both ducts for the CPSF and CPEF for both buildings A and B are lined with 50mm thick insulation for the first 3m from the fan to the duct (outlet).
 - Building B's CPEF 01 should be relocated to the roof.
 - All AC units are operating on Night Mode from 10pm 7am

12 CONCLUSION

Rodney Stevens Acoustics has conducted a Road Traffic, Mechanical Plant and a Rail Noise and Vibration Assessment for the proposed residential development site at 297 Bringelly Road, Leppington NSW. The assessment has been conducted to satisfy State Environmental Planning Policy (Infrastructure) 2007 Clause 102, the EPA's NPfl and other regulatory criteria. With the recommendations set out in this report RSA

Approved: -

nen O. Stermo.

Rodney Stevens - MAAS

Appendix A – Acoustic Terminology

A-weighted sound pressure	The human ear is not equally sensitive to sound at different frequencies. People are more sensitive to sound in the range of 1 to 4 kHz ($1000 - 4000$ vibrations per second) and less sensitive to lower and higher frequency sound. During noise measurement an electronic ' <i>A-weighting</i> ' frequency filter is applied to the measured sound level $dB(A)$ to account for these sensitivities. Other frequency weightings (B, C and D) are less commonly used. Sound measured without a filter is denoted as linear weighted dB(linear).
Ambient noise	The total noise in a given situation, inclusive of all noise source contributions in the near and far field.
Community annoyance	Includes noise annoyance due to:
	 character of the noise (e.g. sound pressure level, tonality, impulsiveness, low-frequency content)
	 character of the environment (e.g. very quiet suburban, suburban, urban, near industry)
	 miscellaneous circumstances (e.g. noise avoidance possibilities, cognitive noise, unpleasant associations)
	 human activity being interrupted (e.g. sleep, communicating, reading, working, listening to radio/TV, recreation).
Compliance	The process of checking that source noise levels meet with the noise limits in a statutory context.
Cumulative noise level	The total level of noise from all sources.
Extraneous noise	Noise resulting from activities that are not typical to the area. Atypical activities may include construction, and traffic generated by holiday periods and by special events such as concerts or sporting events. Normal daily traffic is not considered to be extraneous.
Feasible and reasonable measures	Feasibility relates to engineering considerations and what is practical to build; reasonableness relates to the application of judgement in arriving at a decision, considering the following factors:
	 Noise mitigation benefits (amount of noise reduction provided, number of people protected).
	 Cost of mitigation (cost of mitigation versus benefit provided).
	 Community views (aesthetic impacts and community wishes).

	 Noise levels for affected land uses (existing and future levels, and changes in noise levels).
Impulsiveness	Impulsive noise is noise with a high peak of short duration or a sequence of these peaks. Impulsive noise is also considered annoying.
Low frequency	Noise containing major components in the low-frequency range (20 to 250 Hz) of the frequency spectrum.
Noise criteria	The general set of non-mandatory noise levels for protecting against intrusive noise (for example, background noise plus 5 dB) and loss of amenity (e.g. noise levels for various land use).
Noise level (goal)	A noise level that should be adopted for planning purposes as the highest acceptable noise level for the specific area, land use and time of day.
Noise limits	Enforceable noise levels that appear in conditions on consents and licences. The noise limits are based on achievable noise levels, which the proponent has predicted can be met during the environmental assessment. Exceedance of the noise limits can result in the requirement for either the development of noise management plans or legal action.
Performance-based goals	Goals specified in terms of the outcomes/performance to be achieved, but not in terms of the means of achieving them.
Rating Background Level (RBL)	The rating background level is the overall single figure background level representing each day, evening and night time period. The rating background level is the 10^{th} percentile min L _{A90} noise level measured over all day, evening and night time monitoring periods.
Receptor	The noise-sensitive land use at which noise from a development can be heard.
Sleep disturbance	Awakenings and disturbance of sleep stages.
Sound and decibels (dB)	Sound (or noise) is caused by minute changes in atmospheric pressure that are detected by the human ear. The ratio between the quietest noise audible and that which should cause permanent hearing damage is a million times the change in sound pressure. To simplify this range the sound pressures are logarithmically converted to decibels from a reference level of $2 \times 10-5$ Pa.
	The picture below indicates typical noise levels from common noise sources.

dB is the abbreviation for decibel – a unit of sound measurement. It is equivalent to 10 times the logarithm (to base 10) of the ratio of a given sound pressure to a reference pressure.

Sound	Power	Level	The sound power level of a noise source is the sound energy emitted by the
(SWL)			source. Notated as SWL, sound power levels are typically presented in $dB(A)$.

Sound Pressure Level The level of noise, usually expressed as SPL in dB(A), as measured by a standard sound level meter with a pressure microphone. The sound pressure level in dB(A) gives a close indication of the subjective loudness of the noise.

Statistical noise levels Noise levels varying over time (e.g. community noise, traffic noise, construction noise) are described in terms of the statistical exceedance level.

A hypothetical example of A weighted noise levels over a 15-minute measurement period is indicated in the following figure:

Key descriptor

LAmax Maximum recorded noise level.

	 LA1 The noise level exceeded for 1% of the 15 minute interval.
	 LA10 Noise level present for 10% of the 15 minute interval. Commonly referred to the average maximum noise level.
	 LAeq Equivalent continuous (energy average) A-weighted sound pressure level. It is defined as the steady sound level that contains the same amount of acoustic energy as the corresponding time-varying sound.
	 LA90 Noise level exceeded for 90% of time (background level). The average minimum background sound level (in the absence of the source under consideration).
Threshold	The lowest sound pressure level that produces a detectable response (in an instrument/person).
Tonality	Tonal noise contains one or more prominent tones (and characterised by a distinct frequency components) and is considered more annoying. A 2 to 5 dBA penalty is typically applied to noise sources with tonal characteristics.

((((((() ()))))))))

Appendix B – Calibration Certificates

6)) Researc	h Penr Ph: +	ant Hills NSW /	AUSTRALIA 2120 3.N. 65 160 399 119	
Y	Labs Pty L	td ww	w.acousticrese	arch.com.au	
	Sou	nd Lev	vel Meter		
	Calibr	EC 6167.	Contificat	•	
	Calibration Nu			e	
	Client D	atails Ro	dney Stevens Acousti	cs Pty I td	
	Cheff D	1 M St J	Jajura Close Ives Chase NSW 207	5	
Equipi	nent Tested/ Model Num Instrument Serial Num	ber: Ric ber: 005	on NL-42EX 572559		
	Microphone Serial Num Pre-amplifier Serial Num	ber: 170)395 397		
Pre-Test At	mospheric Conditions	1	Post-Test At	mospheric Conditions	
Ambient Ten Relative	nperature : 21.4°C Humidity : 42.9%		Ambier	nt Temperature : 21. lative Humidity : 42.	.5°C 3%
Barometric	Pressure : 99.19kPa		Baro	metric Pressure : 99.	15kPa
Calibration Techn Calibration	ician : Lucky Jaiswal Date : 04/07/2017		Secondary Che Report Issue Da	ck: Riley Cooper te: 04/07/2017	
	Approved Signat	ory :	french	Jı	uan Aguero
Clause and Charac	teristic Tested	Result	Clause and Char	acteristic Tested	Result Pass
13: Electrical Sig. tests	of frequency weightings	Pass	18: Toneburst responses	1SC Sound Level	Pass
15: Long Term Stabilit	y	Pass	20: Overload Indicat	ion	Pass
16: Level linearity on t	he reference level range	Pass	21: High Level Stab	ility	Pass
The sound level meter su	bmitted for testing has successfu conditions t	lly completed inder which th	the class 2 periodic tests on the tests were performed.	f IEC 61672-3:2006, for the e	nvironmental
However, no general statu 1:2002 because evid demonstrate that the mo	ement or conclusion can be made dence was not publicly available, del of sound level meter fully con IEC 61672-3:2006 cover only a	about conform from an indep nformed to the limited subse	nance of the sound level n bendent testing organisation requirements in IEC 6167 t of the specifications in IE	neter to the full requirements of n responsible for pattern appro 2-1:2002 and because the per C 61672-1:2002.	of IEC 61672- ovals, to iodic tests of
Acoustic Tests	Least	Uncertainties	of Measurement -		1
31.5 Hz to 8kHz	±0.16dB	Lilv	Temperature Relative Humidity	$\pm 0.05^{\circ}C$ +0.46%	
12.5kHz 16kHz	±0.29dB		Barometric Pressure	±0.017kPa	
31.5 Hz to 20 kHz	±0.12dB				
	All uncertainties are derived	at the 95% con	nfidence level with a cover	age factor of 2.	
	This calibration certificate is	to be read in c	onjunction with the calibra	tion test report.	
~	Acoustic Research Labs Pty I	td is NATA	Accredited Laboratory Nun	nber 14172.	
NATA	The results of the tests, calibr	ations and/or	measurements included in	this document are traceable to	
WORLD RECOGNISED	NATA is a signatory to the II	AC Mutual R	ecognition Arrangement for	or the mutual recognition of the	ie
	equivalence of testing medic	al testing, cali	bration and inspection repo	orts.	

Rodney Stevens Acoustics Report Number R170468R5 Revision 5

Acoustic Level 7 Building 2 423 Pennant Hills Rd Pennant Hills NSW AUSTRALIA 2120
 Research
 Pennant Hills
 NSW
 AUSTRALIA
 2120

 Ph: +61 2 9484 0800
 A.B.N. 65 160 399 119
 Www.acousticresearch.com.au
 Ph: +61 2 9484 0800 A.B.N. 65 160 399 119

Sound Level Meter IEC 61672-3.2013

Calibration Certificate

Calibration Number C18124

Client Det	tails Rod	ney Stevens Acoustics Pty Ltd	
	St Iv	yes Chase NSW 2075	
Favinment Testad/ Model Numb	Diar	NI ADEX	<u></u>
Equipment Tested/ Wodel Numb	er: Kioi	1NL-42EA	
Instrument Serial Numb	oer: 0018	34112	
Microphone Serial Numb	er: 1730	008	
Pre-amplifier Serial Numb	er: 7463	38	
Pre-Test Atmospheric Conditions	1.00	Post-Test Atmospheric Conditions	2000
Ambient Temperature : 22.8°C		Ambient Temperature : 22.3°	C
Relative Humidity : 57.6%		Relative Humidity : 58.29	10
Barometric Pressure : 99.35kPa		Barometric Pressure : 99.37	7kPa
Calibration Technician : Vicky Jaiswal	200	Secondary Check: Riley Cooper	E
Calibration Date: 5 Mar 2018		Report Issue Date : 5 Mar 2018	
Approved Signato	ory:	Jua	n Aguero
Clause and Characteristic Tested	Result	Clause and Characteristic Tested	Resul
12: Acoustical Sig. tests of a frequency weighting	Pass	17: Level linearity incl. the level range control	Pass
13: Electrical Sig. tests of frequency weightings	Pass	18: Toneburst response	Pass
14: Frequency and time weightings at 1 kHz Pa		s 19: C Weighted Peak Sound Level	
15: Long Term Stability	Pass	20: Overload Indication	Pass
16: Level linearity on the reference level range	Pass	21: High Level Stability	Pass

The sound level meter submitted for testing has successfully completed the class 2 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed.

However, no general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1:2013 because evidence was not publicly available, from an independent testing organisation responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013 and because the periodic tests of IEC 61672-3:2013 cover only a limited subset of the specifications in IEC 61672-1:2013.

Acoustic Tests 31.5 Hz to 8kHz 12.5kHz 16kHz Electrical Tests 31.5 Hz to 20 kHz

±0.15dB $\pm 0.21 dB$ $\pm 0.29 dB$ ±0.12dB Least Uncertainties of Measurement Environmental Conditions Temperature Relative Humidity Barometric Pressure

±0.07°C ±0.58% ±0.017kPa

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025 - calibration.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF 1

((((((())))

Appendix C – Unattended Noise Monitoring Results

297 Bringelly Street, Leppington

297 Bringelly Street, Leppington

Road Traffic

((((((())))

297 Bringelly Street, Leppington

Road Traffic

297 Bringelly Street, Leppington

Road Traffic

9/4/18

Monday

297 Bringelly Street, Leppington

297 Bringelly Street, Leppington

Road Traffic

Wednesday 11/4/18

Rear (Ambient)

297 Bringelly Street, Leppington

Rear (Ambient)

297 Bringelly Street, Leppington

((((((())))

Rear (Ambient)

297 Bringelly Street, Leppington

Rear (Ambient)

297 Bringelly Street, Leppington

((((((())))

Rear (Ambient)

297 Bringelly Street, Leppington

Rear (Ambient)

297 Bringelly Street, Leppington

9/4/18

Rear (Ambient)

297 Bringelly Street, Leppington

Rear (Ambient)

297 Bringelly Street, Leppington

(((((((()))))))))

Rodney Stevens Acoustics Report Number R170468R5 Revision 5 Proposed Mixed Use Residential 297 Bringelly Road, Leppington Noise Impact Assessment Page 32

